Wire Area Size in DCAClab Circuit Simulator & Burning Effect by Current

Wire Area Size in DCAClab Circuit Simulator & Burning Effect by Current

1. What you see in DCAClab UI

In the DCAClab Circuit Simulator, the wire uses a Wire Properties of DCAClab panel where you can configure:

  • AWG (American Wire Gauge) size
  • Wire Color
  • Show Ampere (Enable / Disable current display)

The AWG dropdown includes the following sizes:

  • 30 (0.05 mm²)
  • 28 (0.08 mm²)
  • 26 (0.13 mm²)
  • 24 (0.21 mm²)
  • 22 (0.33 mm²)
  • 20 (0.52 mm²)
  • 18 (0.82 mm²)
  • 16 (1.31 mm²)
  • 14 (2.08 mm²)
  • 12 (3.31 mm²)
  • 10 (5.26 mm²)

2. AWG to Area Mapping (As used in DCAClab)

AWG Cross-sectional Area (mm²)
30 0.05
28 0.08
26 0.13
24 0.21
22 0.33
20 0.52
18 0.82
16 1.31
14 2.08
12 3.31
10 5.26

3. Why wires burn in DCAClab

Wire burning happens when excessive current flows through a wire that cannot dissipate heat fast enough.

Relevant Physics:

Resistance of a wire:
R = ρ × L / A

Power converted into heat:
P = I² × R

Where:
R = Resistance (Ohm)
ρ = Resistivity of copper = 1.68 × 10⁻⁸ Ω·m
L = Length of wire (meter)
A = Cross-sectional area (m²)
I = Current (Ampere)

More current → more heat → insulation melts → wire burns.

4. Practical Calculation Examples

Example 1: AWG 30 (0.05 mm²)

Area conversion:
0.05 mm² = 5.0 × 10⁻⁸ m²

Resistance per meter:
R = (1.68 × 10⁻⁸) / (5.0 × 10⁻⁸) = 0.336 Ohm/m

Power dissipation:

At 1A:
P = 1² × 0.336 = 0.336 W per meter

At 2.5 A:
P = 2.5² × 0.336 = 6.25 × 0.336 = 2.10 W per mete

Result: The Wire (0.05 mm²) is burned through current (2.5 A).

Example 2: AWG 10 (5.26 mm²)

Area conversion:
5.26 mm² = 5.26 × 10⁻⁶ m²

Resistance per meter:
R = (1.68 × 10⁻⁸) / (5.26 × 10⁻⁶) = 0.00319 Ohm/m

At 20A:
P = 20² × 0.00319 = 400 × 0.00319 = 2.28 W per meter

Result: The Wire (5.26 mm²) won’t be burned through current (20 A).

Resistance Per Meter of the all wires:

  • 30 (0.05 mm²) ➝ 0.337 Ω/m
  • 28 (0.08 mm²) ➝ 0.212 Ω/m
  • 26 (0.13 mm²) ➝ 0.133 Ω/m
  • 24 (0.21 mm²) ➝ 0.084 Ω/m
  • 22 (0.33 mm²) ➝ 0.053 Ω/m
  • 20 (0.52 mm²) ➝ 0.033 Ω/m
  • 18 (0.82 mm²) ➝ 0.021 Ω/m
  • 16 (1.31 mm²) ➝ 0.013 Ω/m
  • 14 (2.08 mm²) ➝ 0.008 Ω/m
  • 12 (3.31 mm²) ➝ 0.005 Ω/m
  • 10 (5.26 mm²) ➝ 0.003 Ω/m

5. Approximate Safe Current (DCACLab)

AWG Area (mm²) Safe Continuous Current
30 0.05 1 - 2.2 A
28 0.08 1 - 2.8 A
26 0.13 1 - 3.5 A
24 0.21 1 - 4.4 A
22 0.33 1 - 5.6 A
20 0.52 1 - 7.1 A
18 0.82 1 - 8.9 A
16 1.31 1 - 11.3 A
14 2.08 1 - 14.2 A
12 3.31 1 - 17.9 A
10 5.26 1 - 22.5 A

If current exceeds these levels, DCAClab visually shows wire burning.

6. How to Test Burning in DCAClab

  1. Select the wire.
  2. Open Wire Properties panel.
  3. Choose AWG size.
  4. Enable Show Ampere.
  5. Apply voltage source.
  6. Gradually increase current.
  7. Observe.

  • Wire color change
  • Heating indicator
  • Burning animation effect

7. Why Thin Wires Burn Faster

  • Smaller cross-sectional area
  • Higher resistance
  • Higher resistance + High current = Excessive heat
  • Heat exceeds insulation tolerance → Wire burns

8. Practical Demo Scenario

Wire: AWG 30
Length: 0.5 meter
Voltage: 5V

Resistance:
R = 0.336 × 0.5 = 0.168 Ohm

Current if no load:
I = V / R = 5 / 0.168 = 29.7 A

Result: Instant wire burn

Solution:

  • Add series resistor
  • OR use thicker wire such as AWG 16 or below

9. Best Practice for DCAClab

  • Always use resistor or proper load
  • Avoid direct short circuits
  • Monitor Ampere display
  • Keep current below 80% of safe limit
  • Use thicker wire for high current circuits

10. Conclusion

DCAClab wire simulation realistically models:

  • AWG size vs Resistance
  • Current flow visualization
  • Thermal burning behavior
  • Real-time Ampere monitoring

Understanding the relationship between AWG, current, resistance, and power helps you design safer and more accurate circuit simulations in DCAClab.